Remote Sensing (Sep 2022)

Calculating Co-Seismic Three-Dimensional Displacements from InSAR Observations with the Dislocation Model-Based Displacement Direction Constraint: Application to the 23 July 2020 Mw6.3 Nima Earthquake, China

  • Jun Hu,
  • Jianwen Shi,
  • Jihong Liu,
  • Wanji Zheng,
  • Kang Zhu

DOI
https://doi.org/10.3390/rs14184481
Journal volume & issue
Vol. 14, no. 18
p. 4481

Abstract

Read online

As one of the most prevailing geodetic tools, the interferometric synthetic aperture radar (InSAR) technique can accurately obtain co-seismic displacements, but is limited to the one-dimensional line-of-sight (LOS) measurement. It is therefore difficult to completely reveal the real three-dimensional (3D) surface displacements with InSAR. By employing azimuth displacement observations from pixel offset tracking (POT) and multiple aperture InSAR (MAI) techniques, 3D displacements of large-magnitude earthquakes can be obtained by integrating the ascending and descending data. However, this method cannot be used to accurately realize the 3D surface displacement measurements of small-magnitude earthquakes due to the low accuracies of the POT/MAI-derived azimuth displacement measurements. In this paper, an alternative method is proposed to calculate co-seismic 3D displacements from ascending and descending InSAR-LOS observations with the dislocation model-based displacement direction constraint. The main contribution lies in the two virtual observation equations that are obtained from the dislocation model-based forward-modeling 3D displacements, which are then combined with the ascending/descending InSAR observations to calculate the 3D displacements. The basis of the two virtual observation equations is that the directions of the 3D displacement vectors are very similar for real and model-based 3D displacements. In addition, the weighted least squares (WLS) method is employed to solve the final 3D displacements, which aims to consider and balance the possible errors in the InSAR observations as well as the dislocation model-based displacement direction constraint. A simulation experiment demonstrates that the proposed method can achieve more accurate 3D displacements compared with the existing methods. The co-seismic 3D displacements of the 2020 Nima earthquake are then accurately obtained by the proposed method. The results show that co-seismic displacements are dominated by the vertical displacement, the magnitude of the horizontal displacement is relatively small, and the overall displacement pattern fits well with the tensile rupture.

Keywords