Metals (Jan 2019)

Dynamically Recrystallized Microstructures, Textures, and Tensile Properties of a Hot Worked High-Mn Steel

  • Pavel Dolzhenko,
  • Marina Tikhonova,
  • Rustam Kaibyshev,
  • Andrey Belyakov

DOI
https://doi.org/10.3390/met9010030
Journal volume & issue
Vol. 9, no. 1
p. 30

Abstract

Read online

The deformation microstructures and mechanical properties were studied in a high-Mn steel subjected to hot compression. The deformation microstructures resulted from the development of dynamic recrystallization (DRX). Two DRX mechanisms, namely discontinuous and continuous, operated during warm-to-hot working. Under the conditions of hot working when the flow stresses were below 100 MPa, a power law function was obtained between the DRX grain size and the true flow stress with a grain size exponent of −0.8 owing to the discontinuous DRX. On the other hand, the gradual change in the operating DRX mechanism from a discontinuous to continuous one upon a transition from hot to warm working, when the true flow stress increases above 100 MPa, resulted in the grain size exponent of about −0.5 in the power law between the flow stress and the DRX grain size. The DRX microstructures developed by warm-to-hot working provide a beneficial combination of mechanical properties including high ultimate tensile strength in the range of 700–900 MPa and sufficient ductility with a uniform elongation well above 50%. The strengthening of the samples with DRX microstructures was attributed to the combined effect of the grain size and dislocation strengthening resulting in a rather high grain boundary strengthening factor of 570 MPa μm0.5 in the Hall-Petch-type relationship.

Keywords