Viruses (Jun 2022)

Inhibitors of Activin Receptor-like Kinase 5 Interfere with SARS-CoV-2 S-Protein Processing and Spike-Mediated Cell Fusion via Attenuation of Furin Expression

  • Maja C. Mezger,
  • Carina Conzelmann,
  • Tatjana Weil,
  • Pascal von Maltitz,
  • Dan P. J. Albers,
  • Jan Münch,
  • Thomas Stamminger,
  • Eva-Maria Schilling

DOI
https://doi.org/10.3390/v14061308
Journal volume & issue
Vol. 14, no. 6
p. 1308

Abstract

Read online

Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor β (TGF-β) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-β1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-β1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell–cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell–cell spread via downregulation of furin which is most pronounced upon TGF-β stimulation. Since a TGF-β dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.

Keywords