Visual Computing for Industry, Biomedicine, and Art (Aug 2025)
Deep learning radiomics of elastography for diagnosing compensated advanced chronic liver disease: an international multicenter study
Abstract
Abstract Accurate, noninvasive diagnosis of compensated advanced chronic liver disease (cACLD) is essential for effective clinical management but remains challenging. This study aimed to develop a deep learning-based radiomics model using international multicenter data and to evaluate its performance by comparing it to the two-dimensional shear wave elastography (2D-SWE) cut-off method covering multiple countries or regions, etiologies, and ultrasound device manufacturers. This retrospective study included 1937 adult patients with chronic liver disease due to hepatitis B, hepatitis C, or metabolic dysfunction-associated steatotic liver disease. All patients underwent 2D-SWE imaging and liver biopsy at 17 centers across China, Japan, and Europe using devices from three manufacturers (SuperSonic Imagine, General Electric, and Mindray). The proposed generalized deep learning radiomics of elastography model integrated both elastographic images and liver stiffness measurements and was trained and tested on stratified internal and external datasets. A total of 1937 patients with 9472 2D-SWE images were included in the statistical analysis. Compared to 2D-SWE, the model achieved a higher area under the receiver operating characteristic curve (AUC) (0.89 vs 0.83, P = 0.025). It also achieved a highly consistent diagnosis across all subanalyses (P values: 0.21–0.91), whereas 2D-SWE exhibited different AUCs in the country or region (P < 0.001) and etiology (P = 0.005) subanalyses but not in the manufacturer subanalysis (P = 0.24). The model demonstrated more accurate and robust performance in noninvasive cACLD diagnosis than 2D-SWE across different countries or regions, etiologies, and manufacturers.
Keywords