Biomolecular Concepts (Dec 2021)

Implication of plant growth-promoting rhizobacteria of Bacillus spp. as biocontrol agents against wilt disease caused by Fusarium oxysporum Schlecht. in Vicia faba L.

  • El-Sersawy Mostafa Mohamed,
  • Hassan Saad El-Din,
  • El-Ghamry Abbas A.,
  • El-Gwad Amr Mahmoud Abd,
  • Fouda Amr

DOI
https://doi.org/10.1515/bmc-2021-0020
Journal volume & issue
Vol. 12, no. 1
pp. 197 – 214

Abstract

Read online

Out of seven Fusarium spp. isolated from infected faba bean roots, two Fusarium oxysporum were selected and showed faba bean-wilt disease severity with percentages of 68% and 47% under greenhouse conditions. The F. oxysporum showed the highest wilt disease was selected to complete the current study. Three rhizobacterial strains were isolated and identified as Bacillus velezensis Vb1, B. paramycoides Vb3, and B. paramycoides Vb6. These strains showed the highest in-vitro antagonistic activity by the dual-culture method against selected F. oxysporum with inhibition percentages of 59±0.2, 46±0.3, and 52±0.3% for Vb1, Vb3, and Vb6, respectively. These rhizobacterial strains exhibit varied activity for nitrogen-fixing and phosphate-solubilizing. Moreover, these strains showed positive results for ammonia, HCN, and siderophores production. The phytohormones production (indole-3-acetic acid, ABA, benzyl, kinten, ziaten, and GA3) and secretion of various lytic enzymes were recorded by these strains with varying degrees. Under greenhouse conditions, the rhizobacterial strains Vb1, Vb3, Vb6, and their consortium can protect faba bean from wilt caused by F. oxysporum with percentages of 70, 60, 65, and 82%, respectively. Under field conditions, the inoculation with the rhizobacterial consortium (Vb1+Vb3+Vb6) significantly increases the growth performance of the F. oxysporum-infected faba bean plant and recorded the highest wilt protection (83.3%).

Keywords