European Radiology Experimental (Nov 2021)

Creating a training set for artificial intelligence from initial segmentations of airways

  • Ivan Dudurych,
  • Antonio Garcia-Uceda,
  • Zaigham Saghir,
  • Harm A. W. M. Tiddens,
  • Rozemarijn Vliegenthart,
  • Marleen de Bruijne

DOI
https://doi.org/10.1186/s41747-021-00247-9
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Airways segmentation is important for research about pulmonary disease but require a large amount of time by trained specialists. We used an openly available software to improve airways segmentations obtained from an artificial intelligence (AI) tool and retrained the tool to get a better performance. Fifteen initial airway segmentations from low-dose chest computed tomography scans were obtained with a 3D-Unet AI tool previously trained on Danish Lung Cancer Screening Trial and Erasmus-MC Sophia datasets. Segmentations were manually corrected in 3D Slicer. The corrected airway segmentations were used to retrain the 3D-Unet. Airway measurements were automatically obtained and included count, airway length and luminal diameter per generation from the segmentations. Correcting segmentations required 2–4 h per scan. Manually corrected segmentations had more branches (p < 0.001), longer airways (p < 0.001) and smaller luminal diameters (p = 0.004) than initial segmentations. Segmentations from retrained 3D-Unets trended towards more branches and longer airways compared to the initial segmentations. The largest changes were seen in airways from 6th generation onwards. Manual correction results in significantly improved segmentations and is potentially a useful and time-efficient method to improve the AI tool performance on a specific hospital or research dataset.

Keywords