SLAS Technology (Aug 2024)

Achieving near-zero particle generation by simplicity of design—A compliant-mechanism-based gripper for clean-room environments

  • Leon Budde,
  • Jakob Hentschel,
  • Sontje Ihler,
  • Thomas Seel

Journal volume & issue
Vol. 29, no. 4
p. 100148

Abstract

Read online

Lab Automation facilitates high-throughput processes and improves reproducibility and efficiency while removing human action, primary source of contaminating particles. Handling poses a risk of contamination due to close contact with the objects. We propose a novel gripper (CrocoGrip) relying on compliant mechanisms to reduce the amount of contaminating particles generated by the gripper rather than preventing their emission, the latter being the common approach in current grippers. Our novel gripper is actuated by linear solenoids and purely relies on deformation for its motion. As a result, abrasive behavior and, therefore, the generation of particles is reduced without the need for additional sealing. We experimentally proved that only particles smaller than 3.0µm are emitted by the gripper, with a large proportion of the particles being generated by the actuation. The CrocoGrip fulfills the demands of ISO14644 class 5. The gripping relies on the deformation energy of the compliant mechanism, making the gripping energy-efficient and safe. The maximum gripping force achieved by the CrocoGrip was 5.5N. Because the force transmitted to the handling object depends on the design of the gripping jaws, which are interchangeable, the force can be reduced for more sensible handling objects. Using three different sets of jaws, CrocoGrip was able to handle a microplate in SBS-standard, a 50mL Falcon tube, and a Ø60mm Petri dish using a robotic arm. Due to the monolithic design of the CrocoGrip and, as a result, the need for few components, we achieve a simplicity of design, making cleaning, sterilization and maintenance easy, even for nonexperts. The CrocoGrip exploits the advantages of compliant mechanisms, especially for applications requiring clean-room environments. This approach of compliant-mechanism-based grippers enables an increase in the cleanliness of handling processes without an increase in system complexity of the gripper to facilitate the lab automation of highly sensible processes, such as in tissue engineering.

Keywords