Animals (Oct 2024)
Effects of Different Photoperiods on Growth Performance, Glucose Metabolism, Acetylcholine, and Its Relative Acetylcholine Receptor Modulation in Broiler Chickens
Abstract
Photoperiods are crucial environmental factors in the growth and health of modern intensive broiler chicken production. To date, the effects of different photoperiods on glucose metabolism, acetylcholine (ACh), and its relative acetylcholine receptor modulation in broilers remain elusive. Herein, we aimed to identify the effects of different photoperiods on regulating glucose metabolism, ACh, nicotinic acetylcholine receptor alpha 4 (α4 nAChR) mRNA, and M3 muscarinic acetylcholine receptor (M3 mAChR) modulation in broilers. A total of 216 healthy 5-day-old Arbor Acres (AA) male broilers was randomly assigned to 12L:12D, 18L:6D, and 24L:0D photoperiods for 4 weeks. The results show that, compared with the 12L:12D photoperiod, the 18L:6D and 24L:0D photoperiods significantly increase the average daily gain (ADG) and average daily feed intake (ADFI) of broilers (p p p p p < 0.05). Our results indicate that extending the photoperiod can promote the growth rate, ACh expression, and α4 nAChR mRNA expression of broilers while reducing the feed efficiency, inhibiting M3 mAChR mRNA expression, and inducing glucose metabolism disorders in broilers.
Keywords