Computational and Structural Biotechnology Journal (Dec 2024)
Towards accurate and efficient diagnoses in nephropathology: An AI-based approach for assessing kidney transplant rejection
Abstract
The Banff classification is useful for diagnosing renal transplant rejection. However, it has limitations due to subjectivity and varying concordance in physicians' assessments. Artificial intelligence (AI) can help standardize research, increase objectivity and accurately quantify morphological characteristics, improving reproducibility in clinical practice. This study aims to develop an AI-based solutions for diagnosing acute kidney transplant rejection by introducing automated evaluation of prognostic morphological patterns. The proposed approach aims to help accurately distinguish borderline changes from rejection. We trained a deep-learning model utilizing a fine-tuned Mask R-CNN architecture which achieved a mean Average Precision value of 0.74 for the segmentation of renal tissue structures. A strong positive nonlinear correlation was found between the measured infiltration areas and fibrosis, indicating the model's potential for assessing these parameters in kidney biopsies. The ROC analysis showed a high predictive ability for distinguishing between ci and i scores based on infiltration area and fibrosis area measurements. The AI model demonstrated high precision in predicting clinical scores which makes it a promising AI assisting tool for pathologists. The application of AI in nephropathology has a potential for advancements, including automated morphometric evaluation, 3D histological models and faster processing to enhance diagnostic accuracy and efficiency.