Forests (Dec 2023)

Multifiltering Algorithm for Enhancing the Accuracy of Individual Tree Parameter Extraction at <i>Eucalyptus</i> Plantations Using LiDAR Data

  • Jinjun Huang,
  • Wen He,
  • Yuefeng Yao

DOI
https://doi.org/10.3390/f15010081
Journal volume & issue
Vol. 15, no. 1
p. 81

Abstract

Read online

Accurately quantifying individual tree parameters is a critical step for assessing carbon sequestration in forest ecosystems. However, it is challenging to gather comprehensive tree point cloud data when using either unmanned aerial vehicle light detection and ranging (UAV-LiDAR) or terrestrial laser scanning (TLS) alone. Moreover, there is still limited research on the effect of point cloud filtering algorithms on the extraction of individual tree parameters from multiplatform LiDAR data. Here, we employed a multifiltering algorithm to increase the accuracy of individual tree parameter (tree height and diameter at breast height (DBH)) extraction with the fusion of TLS and UAV-LiDAR (TLS-UAV-LiDAR) data. The results showed that compared to a single filtering algorithm (improved progressive triangulated irregular network densification, IPTD, or a cloth simulation filter, CSF), the multifiltering algorithm (IPTD + CSF) improves the accuracy of tree height extraction with TLS, UAV-LiDAR, and TLS-UAV-LiDAR data (with R2 improvements from 1% to 7%). IPTD + CSF also enhances the accuracy of DBH extraction with TLS and TLS-UAV-LiDAR. In comparison to single-platform LiDAR (TLS or UAV-LiDAR), TLS-UAV-LiDAR can compensate for the missing crown and stem information, enabling a more detailed depiction of the tree structure. The highest accuracy of individual tree parameter extraction was achieved using the multifiltering algorithm combined with TLS-UAV-LiDAR data. The multifiltering algorithm can facilitate the application of multiplatform LiDAR data and offers an accurate way to quantify individual tree parameters.

Keywords