Molecular Systems Biology (Sep 2023)

Robust dimethyl‐based multiplex‐DIA doubles single‐cell proteome depth via a reference channel

  • Marvin Thielert,
  • Ericka CM Itang,
  • Constantin Ammar,
  • Florian A Rosenberger,
  • Isabell Bludau,
  • Lisa Schweizer,
  • Thierry M Nordmann,
  • Patricia Skowronek,
  • Maria Wahle,
  • Wen‐Feng Zeng,
  • Xie‐Xuan Zhou,
  • Andreas‐David Brunner,
  • Sabrina Richter,
  • Mitchell P Levesque,
  • Fabian J Theis,
  • Martin Steger,
  • Matthias Mann

DOI
https://doi.org/10.15252/msb.202211503
Journal volume & issue
Vol. 19, no. 9
pp. n/a – n/a

Abstract

Read online

Abstract Single‐cell proteomics aims to characterize biological function and heterogeneity at the level of proteins in an unbiased manner. It is currently limited in proteomic depth, throughput, and robustness, which we address here by a streamlined multiplexed workflow using data‐independent acquisition (mDIA). We demonstrate automated and complete dimethyl labeling of bulk or single‐cell samples, without losing proteomic depth. Lys‐N digestion enables five‐plex quantification at MS1 and MS2 level. Because the multiplexed channels are quantitatively isolated from each other, mDIA accommodates a reference channel that does not interfere with the target channels. Our algorithm RefQuant takes advantage of this and confidently quantifies twice as many proteins per single cell compared to our previous work (Brunner et al, PMID 35226415), while our workflow currently allows routine analysis of 80 single cells per day. Finally, we combined mDIA with spatial proteomics to increase the throughput of Deep Visual Proteomics seven‐fold for microdissection and four‐fold for MS analysis. Applying this to primary cutaneous melanoma, we discovered proteomic signatures of cells within distinct tumor microenvironments, showcasing its potential for precision oncology.

Keywords