Energies (Apr 2021)
Identification of Efficient Sampling Techniques for Probabilistic Voltage Stability Analysis of Renewable-Rich Power Systems
Abstract
This paper presents a comparative analysis of six sampling techniques to identify an efficient and accurate sampling technique to be applied to probabilistic voltage stability assessment in large-scale power systems. In this study, six different sampling techniques are investigated and compared to each other in terms of their accuracy and efficiency, including Monte Carlo (MC), three versions of Quasi-Monte Carlo (QMC), i.e., Sobol, Halton, and Latin Hypercube, Markov Chain MC (MCMC), and importance sampling (IS) technique, to evaluate their suitability for application with probabilistic voltage stability analysis in large-scale uncertain power systems. The coefficient of determination (R2) and root mean square error (RMSE) are calculated to measure the accuracy and the efficiency of the sampling techniques compared to each other. All the six sampling techniques provide more than 99% accuracy by producing a large number of wind speed random samples (8760 samples). In terms of efficiency, on the other hand, the three versions of QMC are the most efficient sampling techniques, providing more than 96% accuracy with only a small number of generated samples (150 samples) compared to other techniques.
Keywords