Nanomaterials (Mar 2013)

Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

  • Chris J. Allender,
  • Jenna L. Bowen,
  • Sophie E. Williams,
  • Philip R. Davies

DOI
https://doi.org/10.3390/nano3010192
Journal volume & issue
Vol. 3, no. 1
pp. 192 – 203

Abstract

Read online

This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects.

Keywords