International Journal of Nanomedicine (Dec 2023)

Mucus-Permeable Sonodynamic Therapy Mediated Amphotericin B-Loaded PEGylated PLGA Nanoparticles Enable Eradication of Candida albicans Biofilm

  • Yang M,
  • Xie M,
  • Guo J,
  • Zhang Y,
  • Qiu Y,
  • Wang Z,
  • Du Y

Journal volume & issue
Vol. Volume 18
pp. 7941 – 7963

Abstract

Read online

Min Yang,1,2 Mengyao Xie,1,2 Jiajun Guo,1,2 Yuqing Zhang,1,2 Yan Qiu,1,2 Zhibiao Wang,1,2 Yonghong Du1,2 1State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China; 2Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of ChinaCorrespondence: Zhibiao Wang; Yonghong Du, State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel/Fax +86-23-68485000 ; +86-23-68485021, Email [email protected]; [email protected]: Candida albicans (C. albicans) forms pathogenic biofilms, and the dense mucus layer secreted by the epithelium is a major barrier to the traditional antibiotic treatment of mucosa-associated C. albicans infections. Herein, we report a novel anti-biofilm strategy of mucus-permeable sonodynamic therapy (mp-SDT) based on ultrasound (US)-mediated amphotericin B-loaded PEGylated PLGA nanoparticles (AmB-NPs) to overcome mucus barrier and enable the eradication of C. albicans biofilm.Methods: AmB-NPs were fabricated using ultrasonic double emulsion method, and their physicochemical and sonodynamic properties were determined. The mucus and biofilm permeability of US-mediated AmB-NPs were further investigated. Moreover, the anti-biofilm effect of US-mediated AmB-NPs treatment was thoroughly evaluated on mucus barrier abiotic biofilm, epithelium-associated biotic biofilm, and C. albicans-induced rabbit vaginal biofilms model. In addition, the ultrastructure and secreted cytokines of epithelial cells and the polarization of macrophages were analyzed to investigate the regulation of local cellular immune function by US-mediated AmB-NPs treatment.Results: Polymeric AmB-NPs display excellent sonodynamic performance with massive singlet oxygen (1O2) generation. US-mediated AmB-NPs could rapidly transport through mucus and promote permeability in biofilms, which exhibited excellent eradicating ability to C. albicans biofilms. Furthermore, in the vaginal epithelial cells (VECs)-associated C. albicans biofilm model, the mp-SDT scheme showed the strongest biofilm eradication effect, with up to 98% biofilm re-formation inhibition rate, improved the ultrastructural damage, promoted local immune defense enhancement of VECs, and regulated the polarization of macrophages to the M1 phenotype to enhance macrophage-associated antifungal immune responses. In addition, mp-SDT treatment exhibited excellent therapeutic efficacy against C. albicans-induced rabbit vaginitis, promoted the recovery of mucosal epithelial ultrastructure, and contributed to the reshaping of a healthier vaginal microbiome.Conclusion: The synergistic anti-biofilm strategies of mp-SDT effectively eradicated C. albicans biofilm and simultaneously regulated local antifungal immunity enhancement, which may provide a new approach to treat refractory drug-resistant biofilm-associated mucosal candidiasis.Keywords: C. albicans biofilm, PEGylated nanoparticles, mucus penetration, sonodynamic therapy

Keywords