Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up
Nelly Kanberg,
Joel Simrén,
Arvid Edén,
Lars-Magnus Andersson,
Staffan Nilsson,
Nicholas J. Ashton,
Pär-Daniel Sundvall,
Bengt Nellgård,
Kaj Blennow,
Henrik Zetterberg,
Magnus Gisslén
Affiliations
Nelly Kanberg
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Corresponding author at: Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Joel Simrén
Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
Arvid Edén
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
Lars-Magnus Andersson
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
Staffan Nilsson
Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Nicholas J. Ashton
Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
Pär-Daniel Sundvall
Research, Education, Development and Innovation, Primary Health Care, Region Västra Götaland, Sweden; General Practice/Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Bengt Nellgård
Department of Anaesthesiology and Intensive care, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
Kaj Blennow
Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
Henrik Zetterberg
Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
Magnus Gisslén
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
Background: Neurologic manifestations are well-recognized features of coronavirus disease 2019 (COVID-19). However, the longitudinal association of biomarkers reflecting CNS impact and neurological symptoms is not known. We sought to determine whether plasma biomarkers of CNS injury were associated with neurologic sequelae after COVID-19. Methods: Patients with confirmed acute COVID-19 were studied prospectively. Neurological symptoms were recorded during the acute phase of the disease and at six months follow-up, and blood samples were collected longitudinally. Healthy age-matched individuals were included as controls. We analysed plasma concentrations of neurofilament light-chain (NfL), glial fibrillary acidic protein (GFAp), and growth differentiation factor 15 (GDF-15). Findings: One hundred patients with mild (n = 24), moderate (n = 28), and severe (n = 48) COVID-19 were followed for a median (IQR) of 225 (187–262) days. In the acute phase, patients with severe COVID-19 had higher concentrations of NfL than all other groups (all p < 0·001), and higher GFAp than controls (p < 0·001). GFAp was also significantly increased in moderate disease (p < 0·05) compared with controls. NfL (r = 0·53, p < 0·001) and GFAp (r = 0·39, p < 0·001) correlated with GDF-15 during the acute phase. After six months, NfL and GFAp concentrations had normalized, with no persisting group differences. Despite this, 50 patients reported persistent neurological symptoms, most commonly fatigue (n = 40), “brain-fog” (n = 29), and changes in cognition (n = 25). We found no correlation between persistent neurological symptoms and CNS injury biomarkers in the acute phase. Interpretation: The normalization of CNS injury biomarkers in all individuals, regardless of previous disease severity or persisting neurological symptoms, indicates that post COVID-19 neurological sequelae are not accompanied by ongoing CNS injury. Funding: The Swedish State Support for Clinical Research, SciLifeLab Sweden, and the Knut and Alice Wallenberg Foundation have provided funding for this project.