Water (Apr 2021)

Combining Process Modelling and LCA to Assess the Environmental Impacts of Wastewater Treatment Innovations

  • Aleš Paulu,
  • Jan Bartáček,
  • Markéta Šerešová,
  • Vladimír Kočí

DOI
https://doi.org/10.3390/w13091246
Journal volume & issue
Vol. 13, no. 9
p. 1246

Abstract

Read online

Alternative wastewater treatment (WWT) technologies with lower environmental impacts seem to be the way forward in the pursuit of sustainable wastewater treatment plants (WWTPs). Process modelling of material and energy flows together with life-cycle assessment (LCA) can help to better understand these impacts and show the right direction for their development. Here, we apply this combined approach to three scenarios: conventional WWT; conventional WWT + chemically enhanced primary treatment (CEPT); conventional WWT + CEPT + side stream partial nitritation/anammox (PN/A). For each scenario, equations were developed to calculate chemical oxygen demand and nitrogen flow (solid and dissolved form) through the WWTP and to estimate the energy demands of its unit operations. LCA showed that the main environmental impact categories for all scenarios were global warming potential (GWP), eutrophication potential (EP) and marine aquatic eco-toxicity potential (MAETP). Compared with conventional WWT, CEPT and CEPT combined with PN/A resulted in a higher sum of normalized and weighed environmental indicators, by 19.5% and 16.4%, respectively (20.0% and 18.3% including biogenic carbon). Interestingly, the environmentally positive features of the alternative scenarios were often traded-off against other increased negative impacts. This suggests that further development is needed to consider these technologies a sustainable alternative.

Keywords