JMIR Public Health and Surveillance (Mar 2023)

Comparing Telephone Survey Responses to Best-Corrected Visual Acuity to Estimate the Accuracy of Identifying Vision Loss: Validation Study

  • John Wittenborn,
  • Aaron Lee,
  • Elizabeth A Lundeen,
  • Phoebe Lamuda,
  • Jinan Saaddine,
  • Grace L Su,
  • Randy Lu,
  • Aashka Damani,
  • Jonathan S Zawadzki,
  • Colin P Froines,
  • Jolie Z Shen,
  • Timothy-Paul H Kung,
  • Ryan T Yanagihara,
  • Morgan Maring,
  • Melissa M Takahashi,
  • Marian Blazes,
  • David B Rein

DOI
https://doi.org/10.2196/44552
Journal volume & issue
Vol. 9
p. e44552

Abstract

Read online

BackgroundSelf-reported questions on blindness and vision problems are collected in many national surveys. Recently released surveillance estimates on the prevalence of vision loss used self-reported data to predict variation in the prevalence of objectively measured acuity loss among population groups for whom examination data are not available. However, the validity of self-reported measures to predict prevalence and disparities in visual acuity has not been established. ObjectiveThis study aimed to estimate the diagnostic accuracy of self-reported vision loss measures compared to best-corrected visual acuity (BCVA), inform the design and selection of questions for future data collection, and identify the concordance between self-reported vision and measured acuity at the population level to support ongoing surveillance efforts. MethodsWe calculated accuracy and correlation between self-reported visual function versus BCVA at the individual and population level among patients from the University of Washington ophthalmology or optometry clinics with a prior eye examination, randomly oversampled for visual acuity loss or diagnosed eye diseases. Self-reported visual function was collected via telephone survey. BCVA was determined based on retrospective chart review. Diagnostic accuracy of questions at the person level was measured based on the area under the receiver operator curve (AUC), whereas population-level accuracy was determined based on correlation. ResultsThe survey question, “Are you blind or do you have serious difficulty seeing, even when wearing glasses?” had the highest accuracy for identifying patients with blindness (BCVA ≤20/200; AUC=0.797). The highest accuracy for detecting any vision loss (BCVA <20/40) was achieved by responses of “fair,” “poor,” or “very poor” to the question, “At the present time, would you say your eyesight, with glasses or contact lenses if you wear them, is excellent, good, fair, poor, or very poor” (AUC=0.716). At the population level, the relative relationship between prevalence based on survey questions and BCVA remained stable for most demographic groups, with the only exceptions being groups with small sample sizes, and these differences were generally not significant. ConclusionsAlthough survey questions are not considered to be sufficiently accurate to be used as a diagnostic test at the individual level, we did find relatively high levels of accuracy for some questions. At the population level, we found that the relative prevalence of the 2 most accurate survey questions were highly correlated with the prevalence of measured visual acuity loss among nearly all demographic groups. The results of this study suggest that self-reported vision questions fielded in national surveys are likely to yield an accurate and stable signal of vision loss across different population groups, although the actual measure of prevalence from these questions is not directly analogous to that of BCVA.