EPJ Web of Conferences (Jan 2018)

Analytical measurements of fission products during a severe nuclear accident

  • Doizi D.,
  • Reymond la Ruinaz S.,
  • Haykal I.,
  • Manceron L.,
  • Perrin A.,
  • Boudon V.,
  • Vander Auwera J.,
  • tchana F. Kwabia,
  • Faye M.

DOI
https://doi.org/10.1051/epjconf/201817008005
Journal volume & issue
Vol. 170
p. 08005

Abstract

Read online

The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

Keywords