Scientific Reports (Oct 2023)
Validation of an on-chip p16ink4a/Ki-67 dual immunostaining cervical cytology system using microfluidic device technology
Abstract
Abstract More specific screening systems for cervical cancer may become necessary as the human papillomavirus (HPV) vaccine becomes more widespread. Although p16/Ki-67 dual-staining cytology has several advantages, it requires advanced diagnostic skills. Here, we developed an automated on-chip immunostaining method using a microfluidic device. An electroactive microwell array (EMA) microfluidic device with patterned thin-film electrodes at the bottom of each microwell was used for single-cell capture by dielectrophoresis. Immunostaining and dual staining for p16/Ki-67 were performed on diagnosed liquid cytology samples using the EMA device. The numbers of p16/Ki-67 dual-stained cells captured by the EMA device were determined and compared among the cervical intraepithelial neoplasia (CIN) lesion samples. Seven normal, fifteen CIN grade 3, and seven CIN grade 2 samples were examined. The percentage of dual-positive cells was 18.6% in the CIN grade 2 samples and 23.6% in the CIN grade 3 samples. The percentages of dual-positive staining increased significantly as the severity of the cervical lesions increased. p16/Ki67 dual immunostaining using the EMA device is as sensitive as the conventional method of confirming the histopathological diagnosis of cervical samples. This system enables a quantified parallel analysis at the individual cell level.