Fractal and Fractional (Mar 2025)
Fractal Dimension Warning via Microseismic Time–Energy Data During Rock Mass Failure
Abstract
The early warning of disasters such as ground pressure in deep hard rock mines has long constrained the safe and efficient development of mining activities. Based on fractal theory and fractal dimension interpretation, this study constructs a microseismic monitoring system for mining areas, extracting key elements, particularly time and energy elements. Using the box-counting method of fractal theory, the study investigates the fractal dimensions of microseismic time–energy elements, data interpretation, and disaster source early warning. Through parameter analysis, events related to local potential failure are identified and extracted, and disaster characteristics are revealed based on microseismic activity. A time–energy fractal dimension-based analysis method is developed for preliminary fractal analysis and prediction of regional damage. A time–energy-centered early warning model is constructed, narrowing the prediction range to a scale of 10 m. Based on the fractal interpretation of time–energy data, the prediction and early warning of rock mass failure in mining areas are achieved, with the reliability of nested energy warnings ranging between 91.7% and 96.2%. A comprehensive evaluation criterion for fractal dimension values is established, enabling accurate delineation of warning zones and providing scientific decision-making support for mine safety promotion.
Keywords