Tạp chí Khoa học Đại học Cần Thơ (Jun 2021)
Kiểm thử giải thuật AI trong nhận diện bệnh tôm qua hình ảnh
Abstract
Trí tuệ nhân tạo thường được dùng trong việc phân loại hình ảnh. Trong nghiên cứu này, các giải thuật trí tuệ nhân tạo được sử dụng kết hợp với các đặc trưng SURF, phân cụm dữ liệu với K-mean trên bộ dữ liệu bệnh tôm 6 lớp. Nhằm tìm kiếm giải thuật thích hợp nhất trong việc phân loại bệnh tôm qua hình ảnh, nghiên cứu đã tiến hành kiểm thử trên 4 giải thuật trí tuệ nhân tạo, gồm: giải thuật hồi qui logic, Naïve Bayes, K láng giềng gần nhất và rừng ngẫu nhiên. Tiêu chí đánh giá độ chính xác của các giải thuật này gồm precision, recall và F1. Kết quả thử nghiệm khi áp dụng trên các tập đặc trưng cho thấy đạt tỷ lệ thấp, độ chính xác cao nhất là giải thuật rừng ngẫu nhiên với tiêu chí đánh giá recall là 47,7%. Nghiên cứu tiếp tục tiến hành kết hợp ngẫu nhiên của 4 cụm được phân loại bởi giải thuật K-mean, kết quả thu được với độ chính xác cao nhất theo tiêu chí recall cho giải thuật rừng ngẫu nhiên là 85,9%.
Keywords