PLoS ONE (Jan 2020)
Cu and Na contents regulate N uptake of Leymus chinensis growing in soda saline-alkali soil.
Abstract
Leymus chinensis (L. chinensis) is the dominant plant in the eastern margins of the Eurasian temperate grasslands. It is a very robust species, exhibiting good saline-alkali resistance and stabilizing soil. In this study, 67 soil samples and L. chinensis were collected in western Jilin province, China. The contents of N, P, K, S, Mn, Fe, Zn, Cu and Na were measured, revealing that the growth of L. chinensis was mainly restricted by N based on the stoichiometric N: P ratios of plant. Furthermore, path analysis indicated that N was significantly correlated with K, S, Cu, and Zn. Imbalances in the homeostasis of these four elements may thus constrain N. The homeostasis index of Cu (HCu) in sites with 100%-70% of vegetation cover was only 0.79, it was classified as a sensitive element. However, K, S and Zn, whose concentrations in L. chinensis were significantly related to those of N, exhibited no homeostatic characteristics. These results suggest that when seeking to treat saline-alkali stress, it is important to add fertilizers containing K, S, and Zn to avoid growth limitation. Na+, an ion associated with high soil alkalinity, exhibited weak homeostasis in L. chinensis even in sites with only 40%-10% of vegetation cover. When soil Na exceeded 16000 mg/kg, the homeostasis mechanism of L. chinensis appeared to be overwhelmed, resulting in rapid and probably harmful accumulation of Na. Proper control of N content can alleviate the toxicity of Na stress in L. chinensis and enhance its Na tolerance. Together, these results suggest that combined fertilization with N, K, S, Zn and Cu should be applied to improve grasslands growth. The results of this study can provide a reference basis for sustainable grassland management.