Karpatsʹkì Matematičnì Publìkacìï (Nov 2021)

Weighted Hardy operators in local generalized Orlicz-Morrey spaces

  • C. Aykol,
  • Z.O. Azizova,
  • J.J. Hasanov

DOI
https://doi.org/10.15330/cmp.13.2.522-533
Journal volume & issue
Vol. 13, no. 2
pp. 522 – 533

Abstract

Read online

In this paper, we find sufficient conditions on general Young functions $(\Phi, \Psi)$ and the functions $(\varphi_1,\varphi_2)$ ensuring that the weighted Hardy operators $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ are of strong type from a local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ into another local generalized Orlicz-Morrey space $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$. We also obtain the boundedness of the commutators of $A_\omega^\alpha$ and ${\mathcal A}_\omega^\alpha$ from $M^{0,\,loc}_{\Phi,\,\varphi_1}(\mathbb R^n)$ to $M^{0,\,loc}_{\Psi,\,\varphi_2}(\mathbb R^n)$.

Keywords