BioTechniques (Feb 2003)

Subtracted Restriction Fingerprinting—A Tool for Bacterial Genome Typing

  • Valeri Terletski,
  • Stefan Schwarz,
  • Joseph Carnwath,
  • Heiner Niemann

DOI
https://doi.org/10.2144/03342rr01
Journal volume & issue
Vol. 34, no. 2
pp. 304 – 313

Abstract

Read online

Reproducible, discriminative, high-throughput methods are required for the identification of bacterial strains and isolates in a clinical environment. A new molecular typing method for bacteria was developed and tested on Salmonella and E. coli species. The technique is called subtracted restriction fingerprinting and is based on double restriction enzyme digestion of genomic DNA followed by end labeling. The “detection” enzyme produces TTAA overhangs that are filled in with digoxigenated nucleotides for subsequent detection, while the “subtraction” enzyme produces GCGC overhangs that are filled in with biotinylated nucleotides that permit the removal of this subset of fragments with either streptavidin-coated magnetic particles or AffiniTipTM streptavidin columns. The two restriction enzymes are selected to produce a fragment size profile suitable for a specific analytical system. In this demonstration of the principle of subtracted restriction fingerprinting, analysis of Salmonella enterica subsp. enterica serovar Dublin and E. coli on a 30-cm 1.2% agarose gel revealed up to 50 sharp evenly spaced bands, which were sufficient for the discrimination between various isolates and substrains. The restriction enzyme combinations suitable for the analysis of Salmonella and E. coli are presented. The method requires fewer enzymatic steps than amplified fragment length polymorphism, does not need the specialized DNA preparation essential for pulsed field gel electrophoresis, and has a higher reproducibility than PCR-based methods.