European Physical Journal C: Particles and Fields (Feb 2022)
Punzi-loss:
- F. Abudinén,
- M. Bertemes,
- S. Bilokin,
- M. Campajola,
- G. Casarosa,
- S. Cunliffe,
- L. Corona,
- M. De Nuccio,
- G. De Pietro,
- S. Dey,
- M. Eliachevitch,
- P. Feichtinger,
- T. Ferber,
- J. Gemmler,
- P. Goldenzweig,
- A. Gottmann,
- E. Graziani,
- H. Haigh,
- M. Hohmann,
- T. Humair,
- G. Inguglia,
- J. Kahn,
- T. Keck,
- I. Komarov,
- J.-F. Krohn,
- T. Kuhr,
- S. Lacaprara,
- K. Lieret,
- R. Maiti,
- A. Martini,
- F. Meier,
- F. Metzner,
- M. Milesi,
- S.-H. Park,
- M. Prim,
- C. Pulvermacher,
- M. Ritter,
- Y. Sato,
- C. Schwanda,
- W. Sutcliffe,
- U. Tamponi,
- F. Tenchini,
- P. Urquijo,
- L. Zani,
- R. Žlebčík,
- A. Zupanc
Affiliations
- F. Abudinén
- INFN-Sezione di Trieste
- M. Bertemes
- Institute of High Energy Physics
- S. Bilokin
- Ludwig Maximilians University
- M. Campajola
- Dipartimento di Scienze Fisiche, Università di Napoli Federico II
- G. Casarosa
- Dipartimento di Fisica, Università di Pisa
- S. Cunliffe
- Deutsches Elektronen-Synchrotron
- L. Corona
- Dipartimento di Fisica, Università di Pisa
- M. De Nuccio
- Deutsches Elektronen-Synchrotron
- G. De Pietro
- INFN-Sezione di Roma Tre
- S. Dey
- Tel Aviv University
- M. Eliachevitch
- University of Bonn
- P. Feichtinger
- Institute of High Energy Physics
- T. Ferber
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- J. Gemmler
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- P. Goldenzweig
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- A. Gottmann
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- E. Graziani
- INFN-Sezione di Roma Tre
- H. Haigh
- Institute of High Energy Physics
- M. Hohmann
- University of Melbourne
- T. Humair
- Max-Planck-Institut für Physik
- G. Inguglia
- Institute of High Energy Physics
- J. Kahn
- Helmholtz AI, Karlsruhe Institute of Technology
- T. Keck
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- I. Komarov
- Deutsches Elektronen-Synchrotron
- J.-F. Krohn
- University of Melbourne
- T. Kuhr
- Ludwig Maximilians University
- S. Lacaprara
- INFN-Sezione di Padova
- K. Lieret
- Ludwig Maximilians University
- R. Maiti
- Institute of High Energy Physics
- A. Martini
- Deutsches Elektronen-Synchrotron
- F. Meier
- Duke University
- F. Metzner
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- M. Milesi
- University of Melbourne
- S.-H. Park
- High Energy Accelerator Research Organization (KEK)
- M. Prim
- University of Bonn
- C. Pulvermacher
- Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie
- M. Ritter
- Ludwig Maximilians University
- Y. Sato
- High Energy Accelerator Research Organization (KEK)
- C. Schwanda
- Institute of High Energy Physics
- W. Sutcliffe
- University of Bonn
- U. Tamponi
- INFN-Sezione di Torino
- F. Tenchini
- INFN-Sezione di Pisa
- P. Urquijo
- University of Melbourne
- L. Zani
- Aix Marseille Université, CNRS/IN2P3, CPPM
- R. Žlebčík
- Faculty of Mathematics and Physics, Charles University
- A. Zupanc
- Jožef Stefan Institute
- DOI
- https://doi.org/10.1140/epjc/s10052-022-10070-0
- Journal volume & issue
-
Vol. 82,
no. 2
pp. 1 – 8
Abstract
Abstract We present the novel implementation of a non-differentiable metric approximation and a corresponding loss-scheduling aimed at the search for new particles of unknown mass in high energy physics experiments. We call the loss-scheduling, based on the minimisation of a figure-of-merit related function typical of particle physics, a Punzi-loss function, and the neural network that utilises this loss function a Punzi-net. We show that the Punzi-net outperforms standard multivariate analysis techniques and generalises well to mass hypotheses for which it was not trained. This is achieved by training a single classifier that provides a coherent and optimal classification of all signal hypotheses over the whole search space. Our result constitutes a complementary approach to fully differentiable analyses in particle physics. We implemented this work using PyTorch and provide users full access to a public repository containing all the codes and a training example.