Pd-Decorated ZnO Hexagonal Microdiscs for NH<sub>3</sub> Sensor
Yi Li,
Boyu Zhang,
Juan Li,
Zaihua Duan,
Yajie Yang,
Zhen Yuan,
Yadong Jiang,
Huiling Tai
Affiliations
Yi Li
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Boyu Zhang
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Juan Li
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Zaihua Duan
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Yajie Yang
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Zhen Yuan
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Yadong Jiang
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
Huiling Tai
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
The NH3 sensor is of great significance in preventing NH3 leakage and ensuring life safety. In this work, the Pd-decorated ZnO hexagonal microdiscs are synthesized using hydrothermal and annealing processes, and the gas sensor is fabricated based on Pd-decorated ZnO hexagonal microdiscs. The gas-sensing test results show that the Pd-ZnO gas sensor has a good response to NH3 gas. Specifically, it has a good linear response within 0.5–50 ppm NH3 at the optimal operating temperature of 230 °C. In addition, the Pd-ZnO gas sensor exhibits good repeatability, short response time (23.2 s) and good humidity resistance (10–90% relative humidity). This work provides a useful reference for developing an NH3 sensor.