Épijournal de Géométrie Algébrique (Jun 2020)

Sur l'existence du sch\'ema en groupes fondametal

  • Marco Antei,
  • Michel Emsalem,
  • Carlo Gasbarri

DOI
https://doi.org/10.46298/epiga.2020.volume4.5436
Journal volume & issue
Vol. Volume 4

Abstract

Read online

Let $S$ be a Dedekind scheme, $X$ a connected $S$-scheme locally of finite type and $x\in X(S)$ a section. The aim of the present paper is to establish the existence of the fundamental group scheme of $X$, when $X$ has reduced fibers or when $X$ is normal. We also prove the existence of a group scheme, that we will call the quasi-finite fundamental group scheme of $X$ at $x$, which classifies all the quasi-finite torsors over $X$, pointed over $x$. We define Galois torsors, which play in this context a role similar to the one of Galois covers in the theory of \'etale fundamental group.

Keywords