Low levels of plasma high‐density lipoprotein (HDL) cholesterol are associated with an increased risk of heart failure, regardless of the presence or absence of coronary artery disease. However, the direct effects of HDL on failing myocardium have not been fully elucidated. We found that HDL treatment resulted in improved cell viability in H9c2 cardiomyocytes under oxidative stress. This cardioprotective effect of HDL was regulated via the phosphatidylinositol 3‐kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway. mTOR signaling promotes cell survival through the inactivation of the BCL2‐associated agonist of cell death via phosphorylation of ribosomal protein S6 kinase. Modulation of cardiac PI3K/mTOR signaling by HDL could represent a novel therapeutic strategy for heart failure.