Materials (Sep 2020)

Smart Window with Active-Passive Hybrid Control

  • Heng-Yi Tseng,
  • Li-Min Chang,
  • Kuan-Wu Lin,
  • Cheng-Chang Li,
  • Wan-Hsuan Lin,
  • Chun-Ta Wang,
  • Chien-Wen Lin,
  • Shih-Hsien Liu,
  • Tsung-Hsien Lin

DOI
https://doi.org/10.3390/ma13184137
Journal volume & issue
Vol. 13, no. 18
p. 4137

Abstract

Read online

Dimming and scattering control are two of the major features of smart windows, which provide adjustable sunlight intensity and protect the privacy of people in a building. A hybrid photo- and electrical-controllable smart window that exploits salt and photochromic dichroic dye-doped cholesteric liquid crystal was developed. The photochromic dichroic dye causes a change in transmittance from high to low upon exposure to sunlight. When the light source is removed, the smart window returns from colored to colorless. The salt-doped cholesteric liquid crystal can be bi-stably switched from transparent into the scattering state by a low-frequency voltage pulse and switched back to its transparent state by a high-frequency voltage pulse. In its operating mode, an LC smart window can be passively dimmed by sunlight and the haze can be actively controlled by applying an electrical field to it; it therefore exhibits four optical states—transparent, scattering, dark clear, and dark opaque. Each state is stable in the absence of an applied voltage. This smart window can automatically dim when the sunlight gets stronger, and according to user needs, actively adjust the haze to achieve privacy protection.

Keywords