Sensors (Apr 2025)
Automatic Adaptive Weld Seam Width Control Method for Long-Distance Pipeline Ring Welds
Abstract
In pipeline all-position welding processes, laser scanning provides critical geometric data of width-changing bevel morphology for welding torch swing control, yet conventional second-order derivative zero methods often yield pseudo-inflection points in practical applications. To address this, a third-order derivative weighted average threshold algorithm was developed, integrating image denoising, enhancement, and segmentation pre-processing with cubic spline fitting for precise bevel contour reconstruction. Bevel pixel points were captured by the laser sensor as inputs through the extracted second-order derivative eigenvalues to derive third-order derivative features, applying weighted threshold discrimination to accurately identify inflection points. Dual-angle sensors were implemented to synchronize laser-detected bevel geometry with real-time torch swing adjustments. Experimental results demonstrate that the system achieves a steady-state error of only 1.645% at the maximum swing width, a dynamic response time below 50 ms, and torch center trajectory tracking errors strictly constrained within ±0.1 mm. Compared to conventional methods, the proposed algorithm improves dynamic performance by 20.6% and exhibits unique adaptability to narrow-gap V-grooves. The results of these studies confirmed the ability of the method to provide real-time, accurate control for variable-width weld tracking, forming a swing-width adaptive control system.
Keywords