Insights into Imaging (Feb 2020)

Macrocyclic MR contrast agents: evaluation of multiple-organ gadolinium retention in healthy rats

  • Simona Bussi,
  • Alessandra Coppo,
  • Roberto Celeste,
  • Antonello Fanizzi,
  • Alberto Fringuello Mingo,
  • Andrea Ferraris,
  • Catherine Botteron,
  • Miles A. Kirchin,
  • Fabio Tedoldi,
  • Federico Maisano

DOI
https://doi.org/10.1186/s13244-019-0824-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Objectives The purpose of this study was to compare Gd levels in rat tissues after cumulative exposure to four commercially available macrocyclic gadolinium-based contrast agents (GBCAs). Methods Sixty-five male Sprague-Dawley rats were randomized to four exposure groups (n = 15 per group) and one control group (n = 5). Animals in each exposure group received 20 GBCA administrations (four per week of ProHance®, Dotarem®, Clariscan™, or Gadovist® for 5 consecutive weeks) at a dose of 0.6 mmol/kg bodyweight. After 28-days’ recovery, animals were sacrificed and tissues harvested for Gd determination by inductively coupled plasma-mass spectroscopy (ICP-MS). Histologic assessment of the kidney tissue was performed for all animals. Results Significantly (p ≤ 0.005; all evaluations) lower Gd levels were noted with ProHance® than with Dotarem®, Clariscan™, or Gadovist® in all soft tissue organs: 0.144 ± 0.015 nmol/g vs. 0.342 ± 0.045, 0.377 ± 0.042, and 0.292 ± 0.047 nmol/g, respectively, for cerebrum; 0.151 ± 0.039 nmol/g vs. 0.315 ± 0.04, 0.345 ± 0.053, and 0.316 ± 0.040 nmol/g, respectively, for cerebellum; 0.361 ± 0.106 nmol/g vs. 0.685 ± 0.330, 0.823 ± 0.495, and 1.224 ± 0.664 nmol/g, respectively, for liver; 38.6 ± 25.0 nmol/g vs. 172 ± 134, 212 ± 121, and 294 ± 127 nmol/g, respectively, for kidney; and 0.400 ± 0.112 nmol/g vs. 0.660 ± 0.202, 0.688 ± 0.215, and 0.999 ± 0.442 nmol/g, respectively, for skin. No GBCA-induced macroscopic or microscopic findings were noted in the kidneys. Conclusions Less Gd is retained in the brain and body tissues of rats 28 days after the last exposure to ProHance® compared to other macrocyclic GBCAs, likely due to unique physico-chemical features that facilitate more rapid and efficient clearance.

Keywords