Advances in Astronomy (Jan 2019)
Initial Parameter Analysis about Resonant Orbits in Earth-Moon System
Abstract
The initial parameters about resonant orbits in the Earth-Moon system were investigated in this study. Resonant orbits with different ratios are obtained in the two-body problem and planar circular restricted three-body problem (i.e., PCRTBP). It is found that the eccentricity and initial phase are two important initial parameters of resonant orbits that affect the closest distance between the spacecraft and the Moon. Potential resonant transition or resonant flyby may occur depending on the possibility of the spacecraft approaching the Moon. Based on an analysis of ballistic capture and flyby, the Kepler energy and the planet’s perturbed gravitational sphere are used as criteria to establish connections between the initial parameters and the possible “steady” resonant orbits. The initial parameter intervals that can cause instability of the resonant orbits in the CRTBP are obtained. Examples of resonant orbits in 1:2 and 2:1 resonances are provided to verify the proposed criteria.