Applied Sciences (Feb 2019)

Fabrication of a Silicon Nanowire Solar Cell on a Silicon-on-Insulator Substrate

  • Shinya Kato,
  • Yasuyoshi Kurokawa,
  • Kazuhiro Gotoh,
  • Tetsuo Soga

DOI
https://doi.org/10.3390/app9050818
Journal volume & issue
Vol. 9, no. 5
p. 818

Abstract

Read online

This study proposes metal-assisted chemical etching (MAE) as a facile method to fabricate silicon nanowire (SiNW) array structures, with high optical confinement for thin crystalline silicon solar cells. Conventional SiNW arrays are generally fabricated on Si wafer substrates. However, tests on conventional SiNW-based solar cells cannot determine whether the photo-current is derived from SiNWs or from the Si wafer. Herein, SiNW arrays were fabricated on a silicon-on-insulator substrate with a 10-μm-thick silicon layer for measuring the photocurrent of the SiNW only. The 9 μm-long p-type SiNW arrays were applied to a solar cell structure fabricated using an n-type H-doped amorphous Si layer, thereby confirming the photovoltaic effect. However, the device exhibited a conversion efficiency of 0.0017% because of a low short-circuit current (Jsc) and a low open-circuit voltage (Voc). The low Jsc resulted from a high series resistance and high absorption loss from the amorphous Si layer, whereas the low Voc resulted from the high surface recombination velocity of the SiNW array structure. Therefore, reducing the surface recombination of SiNW-based solar cells can improve their conversion efficiency.

Keywords