Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
Xunda Wang
Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
Eddie C. Wong
Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
Celia M. Dong
Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR
Ed X. Wu
Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Corresponding author at: Laboratory of Biomedical Imaging and Signal Processing, Department of Electrical and Electronic Engineering, and School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
Brain possesses a complex spatiotemporal architecture for efficient information processing and computing. However, it remains unknown how neural signal propagates to its intended targets brain-wide. Using optogenetics and functional MRI, we arbitrarily initiated various discrete neural activity pulse trains with different temporal patterns and revealed their distinct long-range propagation targets within the well-defined, topographically organized somatosensory thalamo-cortical circuit. We further observed that such neural activity propagation over long range could modulate brain-wide sensory functions. Electrophysiological analysis indicated that distinct propagation pathways arose from system level neural adaptation and facilitation in response to the neural activity temporal characteristics. Together, our findings provide fundamental insights into the long-range information transfer and processing. They directly support that temporal coding underpins the whole brain functional architecture in presence of the vast and relatively static anatomical architecture.