IEEE Access (Jan 2023)

Less Parameterization Inception-Based End to End CNN Model for EEG Seizure Detection

  • Kuo-Kai Shyu,
  • Szu-Chi Huang,
  • Lung-Hao Lee,
  • Po-Lei Lee

DOI
https://doi.org/10.1109/ACCESS.2023.3277634
Journal volume & issue
Vol. 11
pp. 49172 – 49182

Abstract

Read online

Many deep-learning-based seizure detection algorithms have achieved good classification, which usually outperformed traditional machine-learning-based algorithms. However, the hand-engineered features increase the computational complexity and potentially have an ineffectiveness problem for the category. Therefore, this paper proposes a novel end-to-end deep-learning model comprising an inception module and a residual module to analyze the multi-scales of original EEG signals and realize seizure detection without feature extraction. Experiments were conducted and evaluated on the Bonn dataset and the CHB-MIT dataset. In the subject-dependent experiments, our model achieved an average F1-score of 69.34% on the CHB-MIT dataset. In subject-independent experiments, our method achieved an average accuracy of 99.04% on the Bonn dataset and an average F1-score of 37.31% on the CHB-MIT dataset. A series of analyses confirmed that our proposed model has better classification performance and lower computational complexity than existing end-to-end seizure detection models.

Keywords