Special Matrices (Jan 2021)

On identities involving generalized harmonic, hyperharmonic and special numbers with Riordan arrays

  • Koparal Sibel,
  • Ömür Neşe,
  • Duran Ömer

DOI
https://doi.org/10.1515/spma-2020-0111
Journal volume & issue
Vol. 9, no. 1
pp. 22 – 30

Abstract

Read online

In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0,∑k=0nBkk!H(n.k,α)=αH(n+1,1,α)-H(n,1,α),\sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} ,and for n > r ≥ 0, ∑k=rn-1(-1)ks(k,r)r!αkk!Hn-k(α)=(-1)rH(n,r,α),\sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} ,

Keywords