Special Matrices (Jan 2021)
On identities involving generalized harmonic, hyperharmonic and special numbers with Riordan arrays
Abstract
In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0,∑k=0nBkk!H(n.k,α)=αH(n+1,1,α)-H(n,1,α),\sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} ,and for n > r ≥ 0, ∑k=rn-1(-1)ks(k,r)r!αkk!Hn-k(α)=(-1)rH(n,r,α),\sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} ,
Keywords