IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2025)
Estimating Long-Term Fractional Vegetation Cover Using an Improved Dimidiate Pixel Method With UAV-Assisted Satellite Data: A Case Study in a Mining Region
Abstract
Accurate long-term estimation of fractional vegetation cover (FVC) is crucial for monitoring vegetation dynamics. Satellite-based methods, such as the dimidiate pixel method (DPM), struggle with spatial heterogeneity due to coarse resolution. Existing methods using unmanned aerial vehicles (UAVs) combined with satellite data (UCS) inadequately leverage the high spatial resolution of UAV imagery to address spatial heterogeneity and are seldom applied to long-term FVC monitoring. To overcome spatial challenges, an improved dimidiate pixel method (IDPM) is proposed here, utilizing 2021 Landsat imagery to generate FVCDPM via DPM and upscaled UAV imagery for FVCUAV as ground references. The IDPM uses the pruned exact linear time method to segment the normalized difference vegetation index (NDVI) into intervals, within which DPM performance is evaluated for potential improvements. Specifically, if the difference (D) between FVCDPM and FVCUAV is nonzero, NDVI-derived texture features are incorporated into FVCDPM through multiple linear regression to enhance accuracy. To address temporal challenges and ensure consistency across years, the 2021 NDVI serves as a reference for inter-year NDVI calibration, employing least squares regression (LSR) and histogram matching (HM) to identify the most effective method for extending the IDPM to other years. Results demonstrate that 1) the IDPM, by developing distinct DPM improvement models for different NDVI intervals, considerably improves UAV and satellite data integration, with a 48.51% increase in R2 and a 56.47% reduction in root mean square error (RMSE) compared to the DPM and UCS and 2) HM is found to be more suitable for mining areas, increasing R2 by 25.00% and reducing RMSE by 54.05% compared to LSR. This method provides an efficient, rapid solution for mitigating spatial heterogeneity and advancing long-term FVC estimation.
Keywords