Cold gas spraying (CS) is a solid-state material deposition process which, in addition to the flexible repair of individual component areas, also enables the build-up of larger samples. The layers are created on a substrate by the impact-induced bonding of highly accelerated micrometer particles. Since melting does not occur, the material composition can be varied flexibly and independently of material-specific melting points. In this work, the influence of the described forming process on subsequent machining by milling and deep rolling is investigated. The process forces measured during milling and the surface topography after milling and deep rolling were influenced by the material composition and the CS-related properties, e.g., high material hardness or particle bonding. In contrast to prior assumptions, deep rolling was shown to have no influence on the determined hardness depth profile for the investigated materials. Future work will focus on additional analyses, such as the determination of half-widths, to obtain further insight on the material behavior.