Categories and General Algebraic Structures with Applications (Jan 2021)
On bornological semi-abelian algebras
Abstract
If $\Bbb T$ is a semi-abelian algebraic theory, we prove that the category ${\rm Born}^{\Bbb T}$ of bornological $\Bbb T$-algebras is homological with semi-direct products. We give a formal criterion for the representability of actions in ${\rm Born}^{\Bbb T}$ and, for a bornological $\Bbb T$-algebra $X$, we investigate the relation between the representability of actions on $X$ as a $\Bbb T$-algebra and as a bornological $\Bbb T$-algebra. We investigate further the algebraic coherence and the algebraic local cartesian closedness of ${\rm Born}^{\Bbb T}$ and prove in particular that both properties hold in the case of bornological groups.
Keywords