BMC Evolutionary Biology (Jan 2019)
Allelic diversity and selection at the MHC class I and class II in a bottlenecked bird of prey, the White-tailed Eagle
Abstract
Abstract Background Genes of the Major Histocompatibility Complex (MHC) are essential for adaptive immune response in vertebrates, as they encode receptors that recognize peptides derived from the processing of intracellular (MHC class I) and extracellular (MHC class II) pathogens. High MHC diversity in natural populations is primarily generated and maintained by pathogen-mediated diversifying and balancing selection. It is, however, debated whether selection at the MHC can counterbalance the effects of drift in bottlenecked populations. The aim of this study was to assess allelic diversity of MHC genes in a recently bottlenecked bird of prey, the White-tailed Eagle Haliaeetus albicilla, as well as to compare mechanisms that shaped the evolution of MHC class I and class II in this species. Results We showed that significant levels of MHC diversity were retained in the core Central European (Polish) population of White-tailed Eagles. Ten MHC class I and 17 MHC class II alleles were recovered in total and individual birds showed high average MHC diversity (3.80 and 6.48 MHC class I and class II alleles per individual, respectively). Distribution of alleles within individuals provided evidence for the presence of at least three class I and five class II loci the White-tailed Eagle, which suggests recent duplication events. MHC class II showed greater sequence polymorphism than MHC class I and there was much stronger signature of diversifying selection acting on MHC class II than class I. Phylogenetic analysis provided evidence for trans-species similarity of class II, but not class I, sequences, which is likely consistent with stronger balancing selection at MHC class II. Conclusions Relatively high MHC diversity retained in the White-tailed Eagles from northern Poland reinforces high conservation value of local eagle populations. At the same time, our study is the first to demonstrate contrasting patterns of allelic diversity and selection at MHC class I and class II in an accipitrid species, supporting the hypothesis that different mechanisms can shape evolutionary trajectories of MHC class I and class II genes.
Keywords