Sensors (Jan 2022)

A Method of Short Text Representation Fusion with Weighted Word Embeddings and Extended Topic Information

  • Wenfu Liu,
  • Jianmin Pang,
  • Qiming Du,
  • Nan Li,
  • Shudan Yang

DOI
https://doi.org/10.3390/s22031066
Journal volume & issue
Vol. 22, no. 3
p. 1066

Abstract

Read online

Short text representation is one of the basic and key tasks of NLP. The traditional method is to simply merge the bag-of-words model and the topic model, which may lead to the problem of ambiguity in semantic information, and leave topic information sparse. We propose an unsupervised text representation method that involves fusing word embeddings and extended topic information. Following this, two fusion strategies of weighted word embeddings and extended topic information are designed: static linear fusion and dynamic fusion. This method can highlight important semantic information, flexibly fuse topic information, and improve the capabilities of short text representation. We use classification and prediction tasks to verify the effectiveness of the method. The testing results show that the method is valid.

Keywords