Directional Observation of Cold Dark Matter Particles (WIMP) in Light Target Experiments
Anna Anokhina,
Vasilisa Gulyaeva,
Emil Khalikov,
Evgeny Kurochkin,
Tatiana Roganova,
Eduard Ursov,
Ivan Vidulin
Affiliations
Anna Anokhina
Department of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
Vasilisa Gulyaeva
Department of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
Emil Khalikov
Skobeltsyn Institute of Nuclear Physics (SINP MSU), Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
Evgeny Kurochkin
Department of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
Tatiana Roganova
Skobeltsyn Institute of Nuclear Physics (SINP MSU), Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
Eduard Ursov
Department of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
Ivan Vidulin
Department of Physics, Federal State Budget Educational Institution of Higher Education, M.V. Lomonosov Moscow State University, 1(2), Leninskie Gory, GSP-1, 119991 Moscow, Russia
For the last 10 years, the search for dark matter (DM) was carried out taking into account the fact that the DM particles are WIMPs (Weakly Interacted Massive Particles) which were introduced in supersymmetric extensions of the Standard Model. Many experiments such as XENON1T, DarkSide, CRESST, etc. set the constraints on the WIMP-nucleon elastic interaction cross sections for different assumed WIMP masses. Methods for detecting WIMPs could play a special role, allowing one to determine the directions of the tracks of recoil nuclei and, therefore, to determine the preferred direction of the WIMP flux. In this work, we analyze the capabilities of such direct detection experiments through analyzing the lengths and directions of the tracks of recoil nuclei. Taking into account the existing experimental constraints, we conclude that the optimal target would be a lower density target containing nuclei of the CNO group, for example, liquid propane.