Nature Communications (Mar 2018)
Chemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
- Mikkel A. Sørensen,
- Ursula B. Hansen,
- Mauro Perfetti,
- Kasper S. Pedersen,
- Elena Bartolomé,
- Giovanna G. Simeoni,
- Hannu Mutka,
- Stéphane Rols,
- Minki Jeong,
- Ivica Zivkovic,
- Maria Retuerto,
- Ana Arauzo,
- Juan Bartolomé,
- Stergios Piligkos,
- Høgni Weihe,
- Linda H. Doerrer,
- Joris van Slageren,
- Henrik M. Rønnow,
- Kim Lefmann,
- Jesper Bendix
Affiliations
- Mikkel A. Sørensen
- Department of Chemistry, University of Copenhagen
- Ursula B. Hansen
- Niels Bohr Institute, University of Copenhagen
- Mauro Perfetti
- Institut für Physikalische Chemie, Universität Stuttgart
- Kasper S. Pedersen
- Department of Chemistry, University of Copenhagen
- Elena Bartolomé
- Escola Universitària Salesiana de Sarrià (EUSS)
- Giovanna G. Simeoni
- Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II, Technische Universität München
- Hannu Mutka
- Institute Laue–Langevin
- Stéphane Rols
- Institute Laue–Langevin
- Minki Jeong
- Laboratory for Quantum Magnetism, École Polytechnique Fédérale Lausanne
- Ivica Zivkovic
- Laboratory for Quantum Magnetism, École Polytechnique Fédérale Lausanne
- Maria Retuerto
- Niels Bohr Institute, University of Copenhagen
- Ana Arauzo
- University of Zaragoza, CSIC-Instituto de Cìencia de Materiales de Aragón (ICMA)
- Juan Bartolomé
- University of Zaragoza, CSIC-Instituto de Cìencia de Materiales de Aragón (ICMA)
- Stergios Piligkos
- Department of Chemistry, University of Copenhagen
- Høgni Weihe
- Department of Chemistry, University of Copenhagen
- Linda H. Doerrer
- Department of Chemistry, Boston University
- Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart
- Henrik M. Rønnow
- Laboratory for Quantum Magnetism, École Polytechnique Fédérale Lausanne
- Kim Lefmann
- Niels Bohr Institute, University of Copenhagen
- Jesper Bendix
- Department of Chemistry, University of Copenhagen
- DOI
- https://doi.org/10.1038/s41467-018-03706-x
- Journal volume & issue
-
Vol. 9,
no. 1
pp. 1 – 9
Abstract
Suppression of quantum tunneling in molecular magnets is key for their magnetic behaviours to be exploitable. Here, the authors show that tuning the geometry of lanthanide single-ion magnets leads to a suppression of the quantum tunneling, finding a three-fold reduction of the tunnel splitting upon changing the crystal field symmetry.