Photonics (Aug 2024)
Prediction through Simulation-Based Corrective Models of Contra-Directional Couplers’ Experimental Results
Abstract
Lithography variation presents one of the biggest challenges for photonic component optimization, especially for fabless designers. Lithography prediction models are a crucial tool for minimizing the necessary number of fabrication iterations for a device’s optimization. This paper presents one of these models specifically adapted for the contra-directional coupler structure. Through the experimental characterization of devices with a specific range of design parameters, it was possible to observe how the lithography process impacts their performance. A correction model based on effective refractive index variation and its impact on the Bragg condition of the structure was developed to predict the performance variation of a device based on the expected design variation induced by fabrication. The contra-directional couplers fabricated at CORNERSTONE foundry show a tendency to be redshifted as the gap decreases, due to an increase in waveguide width as a result of a diffraction-limited lithography process. Based on these and other findings, it was possible to correlate the design parameters to the posterior fabricated structure and ultimately predict the expected experimental response.
Keywords