PLoS ONE (Jan 2012)

Maxadilan prevents apoptosis in iPS cells and shows no effects on the pluripotent state or karyotype.

  • Zhiyi Zhao,
  • Rongjie Yu,
  • Jiayin Yang,
  • Xiaofei Liu,
  • Meihua Tan,
  • Hongyang Li,
  • Jiansu Chen

DOI
https://doi.org/10.1371/journal.pone.0033953
Journal volume & issue
Vol. 7, no. 3
p. e33953

Abstract

Read online

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a structurally endogenous peptide with many biological roles. Maxadilan, a 61-amino acid vasodilatory peptide, specifically activates the PACAP type I receptor (PAC1). Although PAC1 has been identified in embryonic stem cells, little is known about its presence or effects in human induced pluripotent stem (iPS) cells. In the present study, we investigated the expression of PAC1 in human iPS cells by reverse transcriptase polymerase chain reaction (RT-PCR) and western blot analysis. To study the physiological effects mediated by PAC1, we evaluated the role of maxadilan in preventing apoptotic cell death induced by ultraviolet C (UVC). After exposure to UVC, the iPS cells showed a marked reduction in cell viability and a parallel increase of apoptotic cells, as demonstrated by WST-8 analysis, annexin V/propidium iodide (PI) analysis and the terminal transferase dUTP nick end labeling (TUNEL) assay. The addition of 30 nM of maxadilan dramatically increased iPS cell viability and reduced the percentage of apoptotic cells. The anti-apoptotic effects of maxadilan were correlated to the downregulation of caspase-3 and caspase-9. Concomitantly, immunofluorescence, western blot analysis, real-time quantitative polymerase chain reaction (RT-qPCR) analysis and in vitro differentiation results showed that maxadilan did not affect the pluripotent state of iPS cells. Moreover, karyotype analysis showed that maxadilan did not affect the karyotype of iPS cells. In summary, these results demonstrate that PAC1 is present in iPS cells and that maxadilan effectively protects iPS cells against UVC-induced apoptotic cell death while not affecting the pluripotent state or karyotype.