mSphere (Jul 2024)

Endosymbiont-derived metabolites are essential for tick host reproductive fitness

  • Balasubramanian Cibichakravarthy,
  • Neta Shaked,
  • Einat Kapri,
  • Yuval Gottlieb

DOI
https://doi.org/10.1128/msphere.00693-23
Journal volume & issue
Vol. 9, no. 7

Abstract

Read online

ABSTRACT Ticks, like other obligatory blood-feeding arthropods, rely on endosymbiotic bacteria to supplement their diet with B vitamins lacking in blood. It has been suggested that additional metabolites such as L-proline may be involved in this nutritional symbiosis, but this has yet to be tested. Here, we studied the metabolite-based interaction between the brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) and its Coxiella-like endosymbionts (CLE). We measured amino acid titers and tested the effect of B vitamins and L-proline supplementation on the fitness of CLE-suppressed female ticks, displaying low titers of CLE. We found higher titers of L-proline in the symbiont-hosting organs of unfed ticks and in engorged blood-fed whole ticks. Supplementation of B vitamins increased the hatching rate of CLE-suppressed ticks; this effect appears to be stronger when L-proline is added. Our results indicate that L-proline is produced by CLE, and we suggest that CLE is essential in states of high metabolic demand that affects tick reproductive fitness, such as oogenesis and embryonic development. These findings demonstrate the broader effect of nutritional symbionts on their hosts and may potentially contribute to the control of ticks and tick-borne diseases.IMPORTANCECoxiella-like endosymbionts (CLE) are essential to the brown dog tick Rhipicephalus sanguineus for feeding and reproduction. This symbiosis is based on the supplementation of B vitamins lacking in the blood diet. The involvement of additional metabolites has been suggested, but no experimental evidence is available as yet to confirm a metabolic interaction. Here, we show that B vitamins and L-proline, both of which contribute to tick reproductive fitness, are produced by CLE. These findings demonstrate the importance of symbiont-derived metabolites for the host’s persistence and shed light on the complex bacteria-host metabolic interaction, which can be channeled to manipulate and control tick populations.

Keywords