Agronomy (Jun 2022)

Real-Time Temperature Distribution Monitoring in Chinese Solar Greenhouse Using Virtual LAN

  • Shiye Yang,
  • Xin Liu,
  • Shengyan Liu,
  • Xinyi Chen,
  • Yanfei Cao

DOI
https://doi.org/10.3390/agronomy12071565
Journal volume & issue
Vol. 12, no. 7
p. 1565

Abstract

Read online

The internal air temperature of Chinese solar greenhouse (CSG) has the problem of uneven spatial and temporal distribution. To determine temperature distribution at different locations, we designed a greenhouse temperature real-time monitoring system based on virtual local area network (VLAN) and estimate, including interpolation estimation module, data acquisition, and transmission module. The temperature data were obtained from 24 sensors, and the Ordinary Kriging algorithm estimated the temperature distribution of the whole plane according to the data. The results showed that the real-time temperature distribution monitoring method established was fast and robust. In addition, data validity rate for VLAN technology deployed for data transmission was 2.64% higher than that of cellular network technology. The following results are obtained by interpolation estimation of temperature data using gaussian model. The average relative error (ARE) of estimate, mean absolute error (MAE), root mean square error (RMSE), and determination coefficient (R2) were −0.12 °C, 0.42 °C, 0.56 °C, and 0.9964, respectively. After simple optimization of the number of sensors, the following conclusions are drawn. When the number of sensors were decreased to 12~16, MAE, RMSE, and R2 were 0.40~0.60 °C, 0.60~0.80 °C, and >0.99, respectively. Furthermore, temperature distribution in the greenhouse varied in the east–west and north–south directions and had strong regularity. The calculation speed of estimate interpolation algorithm was 50~150 ms, and greenhouse Temperature Distribution Real-time Monitoring System (TDRMS) realized simultaneous acquisition, processing, and fast estimate.

Keywords