Marine Drugs (Jan 2017)

Biochemical and Structural Insights into a Novel Thermostable β-1,3-Galactosidase from Marinomonas sp. BSi20414

  • Haitao Ding,
  • Qian Zeng,
  • Lili Zhou,
  • Yong Yu,
  • Bo Chen

DOI
https://doi.org/10.3390/md15010013
Journal volume & issue
Vol. 15, no. 1
p. 13

Abstract

Read online

A novel β-1,3-galactosidase, designated as MaBGA (β-galactosidase from Marinomonas sp. BSi20414), was successfully purified to homogeneity from Marinomonas sp. BSi20414 isolated from Arctic sea ice by ammonium sulfate precipitation and anion exchange chromatography, resulting in an 8.12-fold increase in specific activity and 9.9% recovery in total activity. MaBGA displayed its maximum activity at pH 6.0 and 60 °C, and maintained at least 90% of its initial activity over the pH range of 5.0–8.0 after incubating for 1 h. It also exhibited considerable thermal stability, which retained 76% of its initial activity after incubating at 50 °C for 6 h. In contrast to other β-galactosidases, MaBGA displayed strict substrate specificity, not only for the glycosyl group, but also for the linkage type. To better understand the structure–function relationship, the encoding gene of MaBGA was obtained and subject to bioinformatics analysis. Multiple alignments and phylogenetic analysis revealed that MaBGA belonged to the glycoside hydrolase family 42 and had closer genetic relationships with thermophilic β-galactosidases of extremophiles. With the aid of homology modeling and molecular docking, we proposed a reasonable explanation for the linkage selectivity of MaBGA from a structural perspective. On account of the robust stability and 1,3-linkage selectivity, MaBGA would be a promising candidate in the biosynthesis of galacto-oligosaccharide with β1–3 linkage.

Keywords