Data in Brief (Apr 2024)
Bluetooth dataset for proximity detection in indoor environments collected with smartphones
Abstract
This paper describes a data collection experiment and the resulting dataset based on Bluetooth beacon messages collected in an indoor museum. The goal of this dataset is to study algorithms and techniques for proximity detection between people and points of interest (POI). To this purpose, we release the data we collected during 32 museum's visits, in which we vary the adopted smartphones and the visiting paths. The smartphone is used to collect Bluetooth beacons emitted by Bluetooth tags positioned nearby each POI. The visiting layout defines the order of visit of 10 artworks. The combination of different smartphones, the visiting paths and features of the indoor museum allow experiencing with realistic environmental conditions. The dataset comprises RSS (Received Signal Strength) values, timestamp and artwork identifiers, as long as a detailed ground truth, reporting the starting and ending time of each artwork's visit. The dataset is addressed to researchers and industrial players interested in further investigating how to automatically detect the location or the proximity between people and specific points of interest, by exploiting commercial technologies available with smartphone. The dataset is designed to speed up the prototyping process, by releasing an accurate ground truth annotation and details concerning the adopted hardware.