Kidney & Blood Pressure Research (May 2023)

CMKLR1 Antagonist Alpha-NETA Protects against Diabetic Nephropathy in Mice

  • Zining Peng,
  • Xueyi Wang,
  • Qing Zhu,
  • Huili Wang,
  • Bing Li,
  • Xinxin Pang,
  • Jiarui Han

DOI
https://doi.org/10.1159/000530763

Abstract

Read online

Introduction: Diabetic nephropathy (DN) is a common complication in diabetic patients. Chemerin, a novel adipokine, has been associated with renal damage in DN. The chemerin chemokine-like receptor 1 (CMKLR1) has been reported to participate in DN. In this study, we aimed to investigate the effect of a CMKLR1 antagonist, 2-(anaphthoyl)ethyltrimethylammonium iodide (α-NETA), on DN. Methods: To induce diabetes, 8-week-old male C57BL/6J mice were given a single intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Diabetic mice were randomly assigned to receive daily doses of 0, 5, or 10 mg/kg α-NETA for 4 weeks. Results: α-NETA dose-dependently induced body weight and reduced fasting blood glucose levels in STZ-induced diabetic mice. Furthermore, α-NETA significantly reduced the expressions of renal injury markers, including serum creatinine, kidney weight/body weight, urine volume, total proteins, and albumin in the urine, and increased creatinine clearance. Periodic acid-Schiff staining also indicated that α-NETA could effectively ameliorate renal injuries in DN mice. In addition, α-NETA inhibited renal inflammation and the expressions of chemerin and CMKLR1 in mice with DN. Conclusion: In summary, our findings suggested that α-NETA has beneficial effects on the management of DN. Specifically, α-NETA effectively ameliorated renal damage and inflammation in a dose-dependent manner in mice with DN. Thus, targeting the chemerin and CMKLR1 axis with α-NETA may be a promising therapeutic strategy for the treatment of DN.

Keywords